Problem Set — Week 2

Introduction to Quantum Computing

Notes:

1. All of these problems can be solved via chatGPT, but I strongly encourage you to try solve
them without using chatGPT!

2. If there is anything you don’t understand, email a tutor to make an appointment, or bring
your question to one of the following two question and answer sessions:
(a) Thursday, 3pm to 5pm, with Ryan.
(b) Friday, 4pm to 6pm, with Florian.

3. If you really understand how to do all the problems in the problem sets, the final exam will
be very easy for you.

4. This problem set will not be graded, but it is compulsory to submit solutions — i.e. in order
to pass the course, you need to submit solutions to every problem set.

5. The deadline for submitting these solution is 10pm on Saturday the 18th of Octo-
ber. to submit the solutions, you should respond to the email that you receive from assign-
ments@aims.ac.za before the deadline.
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(For those submitting their homework using BTEX, we suggest using the package braket for the
Dirac notation.)



Question 1 (Tensor products and the conjugate transpose).

A= (Y, B=(" '),
i 2 0 1—2

Compute the tensor product A ® B explicitly as a 4 x 4 matrix. Then compute (4 ® B).
Verify by direct computation that

1. Let

(Ao B)f = Af ¢ B

2. Prove the following identity for matrices A,C € C"*"™ and B, D € C™*™,

(A B)(C® D) = (AC)® (BD).

3. Let [¢) = %(|00> + 1 |01) + [10)).

(a) Write |¢)) as a column vector in the computational basis {|00) ,|01),]10),|11)}.
(b) Compute the conjugate transpose |1)" = (1]
(c) Form the operator p = [1)(¢)|. Show that p is Hermitian and satisfies p? = p.
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(a) Show that U and V are unitary by verifying UTU = VIV = 1.
(b) Compute U ® V and verify that it is also unitary by checking (U @ V)I(U @ V) = 1.

4. Let

0 1
5. Let X = Lol Compute the 4 x 4 matrices for X ® 1 and 1 ® Z and verify via explicit

calculation that
Xel)(1lewZ)=X®Z

Question 2 (Projective measurements).

Here is a reminder of some terminology and definitions:

1. A (orthogonal) projector on a finite-dimensional Hilbert space H is a linear operator P sat-
isfying P! = P and P? = P.

2. A projective measurement (PVM) is a finite collection {P;}; of projectors on H such that
P]Pk = 5jkPj and ij)j =1.

3. For a pure state [¢), the outcome probabilities when measuring [¢)) with PVM {P;}; are
Bil¢)
Nz

pj = (| Pj|1) and the post-measurement (normalized) state upon outcome j is |¢;) =

With this in mind, answer the following questions:



1. Basic checks.

(a) Decide whether each of the following matrices is a projector. If it is, find its range (the
subspace onto which it projects).

1 0 1(1 1 1(1 2
P = , Po=— ., Pa=_-. .
0 0 2\1 1 2\7 1

(b) Show that {P>, 1 — P>} is a valid projective measurement on a single qubit. What are
the corresponding measurement subspaces?

(c) Let |vg) = cos@ |0) +sinf [1) and |vy) = —sin6 |0) +cos@ |1). Define Py = |vg)(vg| and
Pjt = |vi)(vg|. Show that {Pp, P;"} is a projective measurement for all 6.

2. Calculations with probabilities and post-measurement states.

(a) Let P = |+)(+| and P_ = |-)(—| with |£) = %(|0) +11)). For
\/3 1 in/3
|¢>—7\0>+§€ 1),
compute pr = (| Py|t) and the post-measurement states 1)) = %W.

(b) Consider the four-outcome PVM
Mxz = {l|a)(a] @ |b){(b] with a € {+,—} and b € {0,1}}.

For the state 1

9= 7%

compute the four outcome probabilities and the corresponding normalized post-measurement
states.

(c) Let |®T) = 12 (|00)+|11)) and measure only the first qubit in the X-basis with projectors

(2]00) + |01) + [10)),

S

Iy = |+){(+|®1, I =|-){-|®1.

Compute p+ = (®T|I11|®T) and the (normalized) post-measurement states (IT1 |®1))/\/px
for the two-qubit system.

Question 3 (Hermitian operators define projective measurements).

Consider the following three Hermitian matrices.

10 2 1 3L
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For each matrix M € {A, B,C}, do the following.

1. Compute all eigenvalues and a corresponding orthonormal set of eigenvectors (also called
eigenstates).



2. For each eigenvalue A, define the projector Py onto its (one-dimensional) eigenspace, i.e.
Py, = |vy)(vy]| for a normalized eigenvector |vy).

3. Verify (by direct calculation) that each P\ satisfies the projector properties.

4. Pick two different states |1)), decompose each in the eigenbasis of M, and compute Py [¢)) to
see which components remain.

5. Show that {Py} forms a valid projective measurement by checking >, P\ = 1 and P\P, =
dxuPy. Conclude that M = Y A\ APy is the spectral decomposition (i.e. measuring M corre-
sponds to this PVM).

Question 4 (A winning quantum strategy for the CHSH game.).
In this exercise we are going to complete the proof that the quantum strategy for the CHSH game

(that we discussed in class on Monday), wins with probability approximately 85%. To this end,
recall the following circuit diagram, which describes the strategy for Bongo and Ada:
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Additionally, remember that Bongo and Ada win when a ®b =z A y.

Finally, recall the following definitions:

[thg) = cos@|0) + sin 6 |1)
Uy = 0){o| + [1) (Vg4 /2]



1. Warm up:

(a) Prove that UpU) = 1

(b) Prove that
cos(a — f3)
vz o

2. Winning probabilities. For each possible question (z,y) € {(0,0), (0,1), (1,0),(1,1)}:

((Yal(wsl) [67) =

(a) Calculate the state [¢),,) — Hint: Use Eq. (1))!

(b) For each possible set of answers (a,b) € {(0,0),(0,1),(1,0),(1,1)} calculate the proba-
bility of obtaining the outcome (a,b) when measuring the state [, ,)) with a standard
basis measurement.

(c) Calculate the probability of Bongo and Ada winning the game for this specific question.

Question 5 (Superdense Coding).

Once again, lets think about Ada in her lab in Abuja, and Bongo in his lab in Nairobi. This time
around, Ada wants to send two classical bits to Bongo, but she has run out of data for sending
emails, and can only send one qubit to Bongo. This seems impossible. Luckily, her and Bongo
have already bought an e-bit from the entanglement factory, and she has an idea! In particular,
she proposes for her and Bongo to execute the following quantum circuit:
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Ada
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1. Describe in words the protocol depicted in the circuit.
2. For all possible bit combinations (¢, d) € {(0,0),(0,1),(1,0),(1,1)}:

(a) Calculate the state |1 aq))-

(b) For all possible measurement outcomes (a,b) € {(0,0),(0,1),(1,0),(1,1)} calculate the
probability of obtaining (a, b)

3. Does this circuit indeed do what Ada wanted?



Question 7 (SWAP test 2.0).

Consider the following quantum circuit:

o /EF/"E%— 24
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1. Describe in words what the controlled-SWAP gate in the middle of the circuit does.

2. Calculate the state |x) at the end of the circuit, before measurement.

3. Write down the probability of obtaining “0” when measuring the top qubit with a standard

basis measurement.

4. What can we use this circuit for?

Question 8 (Asymptotic complexity of integer addition).

In class I promised you that we would explore the family of classical circuits — i.e. the algorithm —
for the problem of integer addition - so, here it is! To answer this question, I strongly suggest you
read Lesson 6 of the textbook carefully!

1. Write down a classical circuit — using only FANOUT, NOT, AND and OR gates — for adding
together two two-bit integers. How many elementary gates are in this circuit?

2. Write down a classical circuit for adding together two three-bit integers. To make this easier
to draw, here you can use some “sub-routine” gates. How many elementary gates are in this

circuit?

3. Write down the function f(n) which describes the number of gates in the circuit for adding
together two n-bit integers.

4. Write down a very simple function g(n) for which f(n) = O(g(n)).



